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Shared Memory Parallelization of an implicit ADI-type
CFD code

Th. Hauser and P.G. Huang

Depar_men_ of Mechanical Engineering,

University of Kentucky,

Lexington, Kentucky 40506, USA

Abstract

A paralleliza_ion s_udy designed for ADI-_ype algorithms is presented using

_tle OpenMP specification for shared-memory mul_iprocessor programming.

De_ails of op_imiza_ions specifically addressed _o cache-based computer ar-

chitectures are described and performance measurements for _tle single and

mul_iprocessor implementation are summarized. Tile paper demonstrates

_tla_ optimization of memory access on a cache-based computer architec-

ture controls _tle performance of _tle computational algoridmL A hybrid

MPI/OpenMP approach is proposed for clusters of shared memory machines

_o furdler enhance _tle parallel performance. Tile medlod is applied _o de-

velop a new LES/DNS code, named LESTool. A preliminary DNS calculation

of a fully developed channel flow a_ a Reynolds number of 180, Re_ = 180,

has shown good agreemen_ wi_tl existing da_a.

NASA/CR--1998-208688





1 Introduction

Tile rapid growth of computer hardware and software has made it possible for

CFD to evolve into routine design tools for practical engineering applications

in tile 21st century. It is expected that LES and DNS will become standard

practice in tile CFD methodology. However, due to tile large computer re-

sources demanded by LES and DNS in practical engineering applications,

tile speed of paradigm shift not only hinges upon tile advancement of new

computer hardware and software, but also depends on new CFD algorithms

taking advantage of tile new computer hardware and software developments.

Tile recent advancement in cache-based Shared Memory Multiprocessor

(SMP) architectm'es [4], such as Origin 2000 and HP Exemplar, has provided

an easy transition of a serial CFD programming style to parallel environ-

ments. Tile shared memory approach using OpenMP [6] simplifies tile imple-

mentation of ADI type algorithms compared to tile distributed programming

model using MPI [5]. With OpenMP, tile algorithm can be parallelized along

lines in tile computational domain without speci[ying data movement, which

is necessary in a distributed environment. In addition, tile OpenMP model

provides an incremental path to a parallel program. This approach is much

more efficient than tile distributed model, which requires tile program's data

structures to be explicitly partitioned and hence tile entire application must

be parallelized according to tile partitioned data structures.

Tile main objective of this paper is to describe tile parallel implementation

of ADI-type Navier-Stokes solvers on cache-based shared memory parallel

computers using OpenMP directives. An overview of tile implementation of

ADI-type algorithms is presented and performance results based on tile SGI

Origin 2000 are reported. A number of key features needed to improve tile

speed of tile memory access are highlighted. These improvements in memory

access have led to a high floating point performance in our application code

(LESTool), which is designed for LES and DNS of turbulent flow using high-
order discretization schemes.

2 Governing Equations

Tile fluid motion is governed by tile time-dependent Xavier-Stokes equations

for an ideal gas which express tile conservation of mass, momentum, and en-

ergy for a compressible Newtonian fluid. Tile equations written in curvilinear
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coordinates are:

where Q is tile vector of tile conservative variables multiplied by tile

volume of tile computational cell, V, and is defined by

Q = V (p, pu, pv, pw, pE) T . (2)

Tile F's and G's denote tile convective and viscous fluxes, respectively,

and tile subscripts _, _l and _ represent tile directions of tile fluxes. Tile

inviscid fluxes are given by

puu_ + pV O_/O:r
I_ = pvU_+ pv O_lOy ,

pwU_+ pV O_/Oz
p(E + p/p)u_ - pv O_/Ot

(3)

puu,1+ pv O_/&.
F,, = pvU,,+ pv O_/Oy ,

pwu,_+ pV O_/Oz
p(E + pip)u,, - pv O,_lOt

(4)

puut + pv O</&
Ft = p_ut + pv O_lOy ,

pwUt + pV O_/Oz
p(E + p/p)ut - pv O_/Ot

(_)

where p is tile density, p is tile pressure, u, v, w are tile cartesian velocity

components, E = c + K is tile total energy per unit volume and equal to tile

sum of tile internal energy, c, and tile kinetic energy, K = (u 2 + v 2 + w2)/2,

and tile U's are tile contravariant velocity components defined by
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o_ o_ o_

o< o< o<

Tile viscous fluxesin rile_, _/and ( directionsare given by

(s)

G_ : V[ o )_ O</O:r+ v;_jO</Oy + _ O</Oz

_-;_a</a_-+ <_a</ay + _-_a</a_
91a_/a_-+ 92a_/ay + 93a_/a_

(7)

G;l--V I o )
m O_l/O:r+ g20_l/Oy + g30_l/Oz

(8)

where

G¢ --VI o ] (9)

gl : UT_x + V<ry + W<rz --qx

g3 : UT,_ + VT,,_ + w%_ - q_.

The s_ress _ensor T and d_e hea_ flux vector q are defined by

(30)
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and

Ou 2 (Ouc_x = tl, 204. 3

(Ou2(Ou%_t = t1" 2 Oy 3

(0u2(c%f_ = tl, 20z 3

o÷)"7-_1 = t1, ÷ ,

(o÷o÷)%z = t1" + ,

(o÷%z = t1" + ,

o,, o_))+N+_ ,

o_ 09))+N+_ ,

(11)

(12)

(13)

(14)

(ls)

(16)

q_ = -k OT
04"

q_; = - k OT
Oy '

(lr)

(ls)

(19)q_ = -k OT
Oz '

where t* and k are molecular viscosity and thermal conductivity, respec-

tively.

Tile gradients in tile stresses and heat fluxes of any dependent variable,

0, where 0 can be u, v, w or T, are computed as described in appendix A.3.

Tile pressure is related to tile density and temperature, T, according to

tile equation of state

J,= (v- 1)(E- pK) (20)

where "7 is the ratio of the specific heats. Tile coefficient of viscosity, p,, and

thermal conductivity, k, are related by the constant Prandl number Pr.

u*'p (21)
k- Pr
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3 Numerical method

By defining tile advancement of tile solution fl'om time level _ to _ + 1 as

Q,_+I = Q,_ + AQ,_ (22)

tile implicit, second-order, three-point-backward approximation in time

for tile solution of (1) can be expressed as

3AQ "_ 1AQ "_-1
2 At 2 At [_(F_'÷I- cF1)+

°j(F;_÷l - c:;÷b + _(K_÷l - cVb] .

(23)

Tile inviscid and viscous fluxes F and G are linearized by a Taylor series

expansion

F__÷1 = F__+ A, Ac7_ (24)
n+ 1 n

G_ = G_ + B_AQ _

where X can be (, q or (; A x and B x are tile Jacobian matrices for tile

inviscid and viscous fluxes and are defined in tile appendices A.1 and A.2.

By substituting the linearization (24) into equation (23) one yields

3AQ _
2 At--- + [ ff-ff-ff--_.(A_ - B_)AQ_ + ff---_](A,1- B_I)AQ _ (25)

0 _ B0AcT_] = AR _

where AR '_ is evaluated explicitly fl'om the previous time level, _, accord-

ing to

1 ._Qr_-- 1
-4

2 At
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By further defining a delta-delta variable _5'Q _,m such that

Q'rtffrt+l = Q'rt -Jr- .__Q'rt,'rrt+l (28)

where m is tile counter for tile inner iteration and Q_,m+l and _/XQ_'m+l

become Qr_+l and _SQ T_, respectively when tile solution for tile inner loop

converges, equation (2.5) can be written in delta-delta form as:

2 5t 0 -

- --

(29)

where AR '_''_ is exactly tile net residual of tile equation (23) and can be

evaluated explicitly by

Equation (29) is similar to tile iterative method proposed in [8]. Note

that, when tile inner solution converges, AR _,_r_= 0 and thus equation (23)

is satisfied. Tile exact form of tile LHS of (29) is thus not crucial to tile

solution of (23). Hence, high-order approximations are applied to evaluate

An while stable low-order differencing schemes are used to approximate tile

LHS of (29).

In tile RHS (30), a fifth-order upwinding scheme is applied to evaluate

tile interracial inviscid fluxes, F, while tile sixth-order central differencing

scheme is applied to approximate tile interracial viscous fluxes, G. Other

differencing schemes, such as high-order Pade [31, ENO [91 and B-splining

121,were also proposed and are currently under test. A first-order upwind

differencing approximation and a second-order central differencing scheme

were applied in tile LHS of (29) to ensure numerical stability.

Tile resulting equation in finite volume form is given by:
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where 5 is t.he finite volume operator and D : '_I/At.

Tile diagonal mat.fix D can be ext.ract.ed from equat.ion (31)

(31)

D [I + D I_(A_- B_)+ D I_,,(A,,- B,,)
+D-I_¢(A¢- B¢)]A'Q

After factoring and reexpressing one obtains

= AR.

(32)

D [I 4- D-x6¢(A¢- B¢)] D-XD [I 4- D-X6,l(A,l - B,l) ] D -x

D [I 4- D-xS¢(A¢- Be)] A'Q = AR

Equat, ion (33) can be writ, t,en as an ADI algorit, hm

(33)

[D + 5¢(A¢ - B¢)] ...._,Q1 __-- ...._/_

[D + 5,_(A,_ - B,_)] 5'Q 2 = D._/./._'Q1 (34)

[D 4- a¢(A¢ - Be)] A'Q 3 = DA'Q 2

The solut.ion of equat.ion (34) involves t.he inversion of 5 x 5 block t.ridi-

agonal mat.rices for all t.hree direct.ions.

To reduce comput.at.ional costs, equat.ion (34) can be cast. into t.he diagonal

form of approximat.e factorizat.ion following t.he approach of Pulliam and

Chaussee [71.

OI"

/_-1 [D 4- c_¢(A¢- ?"(g_))]/__.._'Q1 = _.._/_

/_-1 [D4-_5_l(A_1-- r(g_l))]/_lA'Q2 = DA'Q 1

R_-I[D+5¢(A¢-,(B0)]R¢_,'Q 3 = D_,'Q_

(35)

[D 4-5¢(A¢- ?_(g_))]/__.._'Q1 = /__.._/_
[D4-_5_(A_,- r(B,_))]R,_A'Q2 = ]_D...._'_ 1

[D+5¢(A¢- _,(_¢))]_¢_,'C)_ = _¢D_,'Q_
(3_)
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where tileA's and /_'sare tileeigenvalue and eigenvector matrices of

tileconvective Jacobian, respectively,defined in tileappendix by equation

(38) and (42). Tile viscous Jacobian matrices are not diagonalized with tile

same eigenvectormatrices used [ortileinviscidJacobian. There[ore, they are

approximated by their spectral radii,function ,(S) : max(d_ago,_al(S)),

where B is defined in tileappendix A.2. Tlle advantage of (3.5)is that it

involvesonly tileinversionof three scalartridiagonalmatrices, compared to

tileoriginalform, (34),which requirestileinversionof three block tridiagonal

matrices.

In contrast to tilediagonal ADI method, (3.5),tileblock ADI method

treatstileviscous Jacobian matrices in a more exact manner and tilemethod

allows tile use of implicit boundary conditions. As a result, tile solution of

(29) based on tile block ADI method, (34), is more stable and tile method

allows a larger time step to be used in tile calculations. On tile other hand,

tile diagonal ADI method, (35), reduces tile computational effort per timestep

by a factor of .5. Therefore, tile current code allows a combination of tile

diagonal and block ADI in different directions. For example, if tile wall is

normal to tile _/-direction, one can apply tile block ADI only in tile _/-direction

while tile diagonal ADI is used in tile other two directions.

4 Parallel Implementation

4.1 Algorithmic Design and Memory Management

Since tile operators 6_, 6_1, and 6< are one-dimensional operators and only de-

pendent on variables in their corresponding directions, tile solution algorithm

for tile right-hand side, as well as tile ADI-type left-hand side, is designed

in such a way that data along tile i, j and k-directions (corresponding to

tile _, _] and (-directions, respectively) is first copied into one-dimensional

scratch arrays. Then a directional independent module is called to perform

tile operations using tile information provided by these one-dimensional ar-

rays. Once tile operations are completed, tile resulting data are copied back

into tile three-dimensional arrays. Figure 1 shows tile copying of tile data

into scratch arrays in tile i and j-directions. This implementation not only

provides a simplification in tile programming style but also ensures a contin-

uous data flow when evaluating tile LHS and RHS operators. This results

in primary- and secondary-cache hit rates of 98% and 97%, respectively, on

NASA/CR--1998-208688 8



a single-processorOrigin 2000using 1203grid points. Tile array assignment
Dora 3-D to 1-D arrays and vice-versacan be easily implemented using tile

new Fortran 90 array-section %ature to be discussed in tile next section.

nk

ni
9 P

Figure 1: Schematic data transfer of 3D arrays into 1D scratch arrays

Tile data management illustrated in figure I ensures high cache-hit rates

but tile serial performance on tile Origin 2000 for a 643 test case showed only

60 MFLOP/"s (peak 380 MFLOP/"s). Even though tile average performance

of applications on NAS computers is reported to be 40-50 MFLOP//s, we con-

sidered this number unsatisfactory fox" performing large-scale DNS and LES

simulations. To increase tile memory bandwidth, all arithmetic operations

involving tile 5x5 block matrices, used in block tridiagonal and periodic block

tridiagonal solvers, were unrolled. This resulted in a much longer and less

desirable code, but tile perfoxmance results outweigh this disadvantage. As

shown in table 1, tile unrolling of all tile 5x5 matrix operations gives rise to

a nearly tripled memory bandwidth and a doubled bandwidth for tile L1 and

L2 caches, respectively. As a result, tile MFLOP rate on a single processor

increased to 120, a number we consider a satisfactory performance on tile

Origin 2000.

4.2 Benefits of Using Fortran 90

Fortran 90 was chosen as tile programming language fox" tile LESTool code.

A number of new language features compared to Fortran 77 are found to

be very useful for tile development of a efficient, portable and maintainable

program. Some of these features are highlighted below.
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Table 1: Optimization on a singleprocessor(643grid points)
no unrolling unrolling

MFLOP/S 60 119
CPU-time (s) 703 314

primary cachehit rate 0.985 0.961
secondarycachehit rate 0.967 0.947

memorybandwidth used(MB/s) 9.9 28.49
L1 - L2 bandwidth used (MB/s) 80.07 1.57.84

. Control of precision: Because tile current code is intended for 3-D

multi-block general coordinates using high-order schemes, tile numer-

ical precision of program variables is important to reduce tile main

memory usage of tile code. For example, high precision is needed for

field quantities while lower precision can be used for tile geometric

quantities, such as surface area vectors. Moreover, for tile weighting

of tile high-order interpolation functions, tile use of a short integer,

which provides a precision up to 4 significant digits, may be sufficient.

Fortran 90 provides a convenient and portable way for such a precision

control, as shown below.

MODULE kind_spec_module

IMPLICIT NONE

INTEGER, PARAMETER

INTEGER, PARAMETER

INTEGER, PARAMETER

INTEGER, PARAMETER

:: high = SELECTED_REAL_KIND(15,307)

:: low = SELECTED_REAL_KIND(6,32)

:: short = SELECTED_INT_KIND(4)

:: long = SELECTED_INT_KIND(9)

END MODULE kind_spec_module

. Modules: As already shown in tile previous example, tile module syntax

provides a mean to package global parameters, derived types and asso-

ciated operations, and to access them wherever needed. This enables

a more maintainable programming style.

. Dynamic memory control: Memory may be allocated and deallocated

on demand in Fortran 90. This results in a more flexible implementa-

tion that will respond to changes of grid size, as shown in tile example

below.

NASA/CR--1998-208688 10



REAL(HIGH), DIMENSION(:, :, :), ALLOCATABLE :: x, y,

READ(1) hi, nj, nk

ALLOCATE(x(ni, nj, nk), y(ni, nj, nk), z(ni, nj, nk))

DEALLOCATE(x, y, z)

4. Pointer variables:Pointerswillenable the definitionof aliasesto differ-

ent memory regions. As can be seen from tile example below, all depen-

dent variables are grouped together with tile leading dimension being

tile number of variables. This arrangement is preferred by tile cache-

memory architecture while pointer variables provide precise names to

access a single variable inside this memory block.

ALLOCATE(variables(5, ni, nj,

rho => variables(l, :, :, :)

thou => variables(2, :, :, :)

nk))

5. Array syntax: As discussed in section 2.1, this feature simplifies tile

programming of tile ADI-algorithm, and results in a source code which

is short and easy to comprehend. For example, tile copying opera-
tion for tile k-direction of tile three-dimensional variables to tile one-

dimensional scratch array is depicted below.

rho_ld(:) = rho_3d(i, j, :)

. Derived types: This feature provides a mean to group related data

together, as shown in tile next example. Here we reduce tile storage

needed for tile cell-face vectors by just storing tile magnitude in a low-

precision floating point number and tile directional cosines for each

vector component in three, short integers.

TYPE, public :: storage

REAL(low) :: magnitude

INTEGER(short), DIMENSION(3) :: vector

END TYPE storage

TYPE(storage), DIMENSION(hi, nj, nk) :: normal_vector

NASA/CR--1998-208688 11



7. Rich set of intrinsic functions: In addition to tile powerful arraysyntax,
a number of new intrinsic functions, suchasTRANSPOSE, MATMUL
and DOT_PRODUCT, provide a convenientway %r matrix and vec-

tor operations. For example, interpolating a variable Of to any order

involves a dot product of tile weighting and variable vectors:

oTd_T

i--1

In Fortran 90, tile interpolation can be expressed very conveniently in

an order-independent manner.

rho_interface(i) = DOT_PRODUCT(rho_ld(is:ie),

weighting(:, i))

For tile multiblock implementation, tile new features of Fortran 90, such

as abstract data types and generic programming, have been tested. This

programming style enabled us to reveal tile weaknesses of tile different vendor

compilers. It should be mentioned that tile current version (7.2.1) of tile SGI

compiler has solved all our compiler-related difficulties.

4.3 Parallel Implementation using OpenMP

For tile parallelization of tile ADI-type solver, tile recently developed OpenMP

specification for programming shared-memory multiprocessors is used. SGI

adopted the OpenMP standard for the ORIGIN series in the version 7.2.1

compiler and HP has promised that their implementation of the OpenMP

specification will be released in the upcoming compiler. Because OpenMP

is a portable and scalable shared-memory multiprocessing application pro-

gram interface (API) that gives programmers a simple and flexible interface

for developing parallel applications, it is our belief that it will become the

equivalent of MPI, the standard for distributed memory programming.

The LESTool code was parallelized by placing OpenMP directives in the

outer loop within the LHS and RHS operations. This involved decomposing

the 3D problem into groups of 1D lines, with each group assigned to a ded-

icated processor. The efficiency of the parallel decomposition was enhanced

by the use of the "first touch" policy, which is specific to the SGI Origin 2000.

This implies that the memory allocated is physically placed in the processor

NASA/CR--1998-208688 12



node that touches tile memory location first. All large three dimensional

blocks of memory, initialized in planes of constant k, were distributed into

different nodes. This allows an easy parallelization for tile i- and j-directions.

After finishing tile computation in i- and j-directions, tile solution in

tile k-direction is performed. On typical distributed memory-computers this

presents a problem because tile memory has been distributed in ij-planes

and therefore no processor can access data along k-lines. In contrast, tile

solution in tile k-direction poses no difficulty on a shared-memory computer.

In tile current approach tile outer loop was chosen to be in tile j-direction,

and tile 1-D partition of tile ik-planes was parallelized.

5 Parallel Performance Results

Tile mesh used for this test problem (a direct numerical simulation of a fully

developed turbulent channel) was 1203 grid points resulting in a memory

usage of 1.5 Gbytes. Tile large arrays from this problem size do not fit into

tile aggregate of tile cache memories and tile data is scattered across local

memories in different processor nodes. Tile performance on a varying number

of processors is illustrated by measuring tile speedup and MFLOP rate for a

computation of four time-steps, with 5 inner ADI iterations being performed

at each time step.

Tile results in Fig. 2 show that tile speedup scales reasonably well fox"

up to 16 processors (approximately 10 times speed up) while a gradual flat-

tening of tile speedup is observed when using 32 processors (approximately

13 times speedup). Tile MFLOP rate per processors drops from 112 fox" a

single process to 85 fox" 16 processors and to 75 fox" 32 processors. Although

tile MFLOP rate is still sufficiently high fox" 32 processors, tile drop of tile

performance is related to longer memory access times. Although tile memory

access time can be further reduced by additional tuning of tile code, we an-

ticipate no major breakthrough. Instead, we propose to tackle this problem

by developing a new hybrid MPI/OpenMP approach, which will be described

in section T.
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Figure 2: Speedup and MFLOP/s on the SGI ORIGIN 2000 (1203 grid

points)

6 DNS of fully developed turbulence in a chan-

nel

Tile results presented in _his paper were based on _he direc_ numerical sim-

ulation of a fully developed channel flow reported in [1]. Tile flow has _wo

periodic (_ and z) directions and _he solid wall condition was imposed in

_he y direction. Tile Reynolds number based on _he wall shear velociLv,

u_- = V/-_/p, is/_c_- ---- p_,u_-H/tl,_, ---- 180, where H is half _he channel width.

Tile s_reamwise and spanwise dimensions of _he channel are 4z-H and 2z-H,

respectively. Tile computation is carried ou_ on a grid using 200x121x200

grid points in _, y, and z, respectively. Tile flow field is initialized with a

laminar solution and random fluctuations are superimposed on _he pressure

field. Tile governing equations are _hen integrated in _ime until a s_a_is_ical

equilibrium is reached (Z u_-/H > 30).

Figure 3 shows _he dimensionless velocity, u + -- u/W, plo_ed agains_

dimensionless wall distance, y+ -- yu_-/u. Also shown in _his figure is _he

comparison of _he predicted mean velocity profile agains_ _he da_a cited in

[1] for _he same Reynolds number. The do_ed line represents _he desirable

profile in _he viscous sublayer, u + -- y+, and _he dashed line denotes _he

NASA/CR--1998-208688 14



log-law line, u + = ln(9+)/0.41 +.5.2. Tile figure shows that. t.he current, mean

velocit.y profile mat.ches t.he data of Nim et. al. [1] very well. A det.ailed

comparison of t.he DNS st.at.ist.ics of t.urbulent, quantities will be present.ed

elsewhere.

20

15

10

_) ,

J

.:/"

.............. i ........ i

1 10 100

Figure 3: Mean velocit.y profiles:

sublayer; , log layer.

, LESTool; o, DNS of [1]; ...... , viscous

7 Outlook - Combining MPI/OpenMP

Tile future of high-performance computer hardware will continue _o evolve

in _tle direction of clusters of SMP computers. In _tlis model, SMP comput-

ing nodes are interconnected by fast, high-speed da_a links. While OpenMP

provides a convenien_ way for parallel programming, MPI is _tle natural ap-

proach for distributed computing. In furdler developmen_ of _tle LESTool

code, we dlerefore propose _o use a hybrid MPI/OpenMP approach in an

a_emp_ _o combine _tle bes_ features of _tle _wo approaches. Tile hybrid

approach provides _tle flexibility _o choose between shared and distributed

memory computing, or a combination of _tle _wo.

Our ultimate goal is _o use _tle CFD code for _tle simulation of complex

geometries by applying _tle multi-block concepU This s_ra_egy is designed _o
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take advantage of tile hybrid MPI/OpenMP practice. From tile overall pool

of processors, different groups of processors will be clustered together. These

clusters of processors will contain one or more grid blocks and communicate

using MPI. Within each cluster tile solver is parallelized using OpenMP. A

schematic overview of this concept is depicted in figure 4. Testing of tile code

using this hybrid practice is currently underway.

distributed memory parallel

MPI

Figure 4: A concept for a hybrid MPI/OpenMP parallelization

8 Concluding Remarks

In this paper tile numerical method for a high-order CFD code in curvilinear

coordinates is described and two variants of tile iterative implicit time inte-

gration scheme are discussed in detail. The DNS results obtained with this

code show good agreement with results reported in the literature.

Experience on the shared-memory parallelization of an ADI-type CFD

code is reported. Data management by loading 3-D arrays into 1-D arrays

has been found to be very successful for the cache-based architectures. One

surprising finding is the need to unroll all 5-by-5 matrix operations to achieve

high MFLOP rates.

The advantage of Fortran 90 in implementing the current code is clear.

The excellent new features of Fortran 90 in comparison to Fortran 77 of-

fer the possibility to create an efficient, portable and maintainable program.

Although compiler errors fl'om different vendors have been encountered, we

NASA/CR--1998-208688 16



found the overalladvantages of using thisnew language outweigh the disad-

vantages. The performance of the current 7.2.1version of the SGI compiler

isvery satisfactory.

The new OpenMP directivesare used to parallelizethe code on the SGI

Origin 2000 computer. OpenMP offersa portable and simple way to use

directive-basedparallelizationfox"the current LESTool code. We believe

that fox"shared-memory parallelizationOpenMP willbe as widely accepted

as itscounterpart MPI fox"distributedparallelprocessing.

The scalingof the current code isfairlysatisfactoryup to 16 processors.

However, the parallelefficiencyfox"more than 32 processorsisonly marginal

due to excess memory-access time.

A hybrid MPI/"OpenMP concept that combines the best featuresof both

MPI and OpenMP standards isproposed. This practicecan be coupled with

the multi-block strategy of the current CFD code and is believed to offer

the additional mileage needed to speed up the code fox"multi-node, multi-

processor computer architectures.
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A

A.1

Appendix

Euler Flux Jacobians

L

8

y (J)

52
z (k) x (i)

Figure 5: Discrete control volume

Tile Jacobian Matrix Ax, where X denotes _, _1or (/direction, at a control

volume face shown in figure 5 can be defined as

0G
Ax- OQ -R 1AxR

where A x and R are tile eigenvalue and eigenvector matrices of tile Jacobian,

respectively. The diagonal matrix A x can be written as

where

AX, 1 0 0 0 0 /

0 t>2 0 0 0

A = 0 0 Ax,3 0 0 (38)

0 0 0 fix,4 0

0 0 0 0 Ax,5
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AX, 1 = AX, 2 = _x, 3 = U_X (39)

A_,_-- G + cvv'tox/&) 2+ (ox/oy)2+ (ox/&)_ (4o)

Tile eigenvect, ors/2 can be expressed by the product, of the t,hree mat, rices

where

R= cN:_ (42)

-c 0 0 0 1 /

0 0 100

C= 0 0 010 (43)

0 c 001

0 -c 0 0 1

and

1 0 0 0 O)

0 2_7-tl 2_7-t2 2_7-t3 0

N= 0 I_bl IZb2 IZb3 0 (44)

0 /gcl /gc2 Cc3 0

0 0 0 0 1

1 0 0 0 0 )

-u 1 0 0 0

M= -v 0 1 0 0

-w 0 0 1 0

(V-1)K -(V-l> -(V-m -(V-1)w V-1

(4.5)

In equat.ion (44), vect.ors ('z_n, ,z_,2, 'z_,3), (,zbs, ,zb2, ,boa) and (,zcs, ,zc2, la)
corresponds t.o t.he unit. vect.ors normal t.o t.he cont.rol volume face, (1_ x 24),

and the units vectors in t.he 1-3 and 2-4 direct.ions, respect.ively, as shown in

figure .5.
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Tile t.ransformat.ion R convert.s tile conservat.ive variables into Riemann

variables

IF_(_Q = ((_]) - c2(_ro, ro(_UT1, ro(_UT2, (_]) Jr- roc(_Un, (_]) - pc(_Un) T (46)

where U,_ is t.he cont.ravariant, velocit.y normal t.o t.he cont.rol volume face

(1_ x 2_) and and UT2 are two t.angent.ial velocit.ies in t.he 1_ and 2_ direc-

t.ions, respect.ively.

A.2 Viscous Flux Jacobians

Similarly, tile Jacobian mat.rices B x can be computed as

0 0 0 0 0 )

--7/$22_ -- 7/$23_J -- 7/$24W 71522 71523 71524 0

Bx= -m23u-m33v-m34w m23 m33 m34 0
-m24u-m34v-m44w m24 m34 m44 0

61 62 63 64 _t_88

where

(47)

and

61 --

62 =

[ 3 =

64 =

__ --7/_22 _2 -- 7/_33 v2 -- 7/_44_/) 2 -Jr-7/_88 (/£ -- cvT )

--27/_23_v -- 27/_24_w -- 27/_34vw

(m22 - m55)u + m23v + m24w

_/Z23U -Jr- (_/Z33 -- _/Z55)V -Jr- _/Z34W

ln24U Jr- ln34V Jr- (1n44 -- ln55)W

(48)

,,_ = .v[4(o_/o_-)U3+ (o_/o_)_+ (o_/o_)_]
,,_ = ,v[(o_/o_.)_+ 4(o_/o_)_/3+ (o_/o_)2]
,,_ = ,v[(o_/o_-)_+ (o_/o_)_+ 4(o_/o_)_/3]

_,_ = -_v[(o_/o_.)_+ (o_/o_)2+ (o_/o_)_]

_,_._= ,v(o_/o_)(o_/o_)/3

(49)
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A.3 Coordinate transformation

Gradients of any variable 0 are evaluated using tile following transformation:

oy/o_ 0y/0b 0y/0(, 0,/0y = 0,/0b (.50)

where a, b and c are components of tile transformed coordinates defined

by tile P-E, 1-3 and 2-4 directions, respectively, as shown in figure 5.

A.4 Metric vectors

ThemetricvectorsV(O</O_,O</Oy,O</O_),V(O_/O_,O_/Oy,O_/O_)and
v(o</o_., o</oy, o</o_) are the the surface vectors normal to the control
volume faces in tile _, _1and < directions, respectively and can be written in

a general for m as ($1, $2, $3), which can be defined by the cross product of

the vector 1_ and 2_ for any control volume face as shown in figure 5

1 (3 × _) (_1)

Note that S and P_ are not necessarily in the same direction in general

curvilinear coordinates.
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